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Abstract

An effective interface element technology is presented for connecting and simulating crack growth between inde-

pendently modeled finite element subdomains (e.g., composite plies). This method has been developed using penalty

constraints and allows coupling of finite element models whose nodes do not necessarily coincide along their common

interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely

compatible with existing commercial software. The present interface element has been implemented in the commercial

finite element code ABAQUS as a user element subroutine (UEL), making it easy to test the approach for a wide range

of problems. The interface element technology has been formulated to simulate delamination growth in composite

laminates. Thanks to its special features, the interface element approach makes it possible to release portions of the

interface surface whose length is smaller than that of the finite elements. In addition, the penalty parameter can vary

within the interface element, allowing the damage model to be applied to a desired fraction of the interface between the

two meshes. Results for double cantilever beam DCB, end-loaded split (ELS) and fixed-ratio mixed mode (FRMM)

specimens are presented. These results are compared to measured data to assess the ability of the present damage model

to simulate crack growth.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With model sharing and large scale analysis activities on the rise, there is an increasing need to perform a

unified analysis of a structural assembly using substructural models created independently. These sub-

structural models are frequently created by different engineers using different software and in different
geographical locations, with little or no communication between the teams of engineers creating the models.
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As a result, these models are likely to be incompatible at their interfaces, making it very difficult to combine

them for a unified analysis of the entire assembly. Finite element interface technology has been developed to

facilitate the joining of independently modeled substructures.

Unconventional approaches have been employed to connect special elements based on analytical
solutions to finite element models (Aminpour and Hosapple, 1991; Jinping and Huizu, 1991). In order to

take advantage of parallel computing, Farhat and Roux (1991) and Farhat and Gerardin (1992) devel-

oped a domain decomposition approach. In another work (Maday et al., 1988) non-conforming ‘‘mortar’’

elements are employed to connect incompatible subdomains. The finite element interface technology

developed at NASA LaRC (Ransom et al., 1993; Ransom, 1997; Housner et al., 1995; Aminpour et al.,

1995; Aminpour and Krishnamurthy, 1997) and elsewhere (Aminpour et al., 1998) allows the connection

of independently modeled substructures with incompatible discretization along the common boundary.

This approach has matured to a point that it is now very effective. However, because this form of the
interface technology utilizes Lagrange multipliers to enforce the interface constraint conditions, the

resulting system of equations is not positive-definite. Recently, an alternative formulation for the finite

element interface technology based on Lagrange multipliers has been developed (Aminpour et al., 2000).

The alternative approach recasts the interface element constraint equations in the form of multi-point

constraints. This change allows an easier implementation of the formulation in a standard finite element

code and alleviates the issues related to the resulting non-positive-definite system of equations. The

method seems to provide reliable results, but the formulation of the interface method is still quite

complicated.
A possible remedy for these shortcomings is to modify the existing hybrid variational formulation of the

interface element by enforcing the interface constraints via a penalty method as opposed to the current

Lagrange multiplier approach. The primary consequences of this modification will be (i) a simple formu-

lation that is easily implemented in commercial finite elements codes, (ii) a positive-definite and banded

stiffness matrix and (iii) a reduced number of DOFs, since the Lagrange multiplier degrees of freedom

(DOFs) will not be present. Thus, the penalty approach should greatly enhance the computational effi-

ciency of the interface element technology.

From an accuracy point of view, the penalty method enforces the constraints only approximately,
depending on the value of the penalty parameter chosen, while the Lagrange multiplier approach enforces the

constraints exactly. The penaltymethod interface approach was recently attempted using a single global value

of the penalty parameter to enforce all constraints (Cho andKim, 1998). This study demonstrated the validity

and the effectiveness of the penalty approach in an interface element. However, there is need for specific

guidelines regarding the selection of an appropriate value of the penalty parameter, especially when the

substructures to be connected have different material and/or section stiffnesses. A criterion for choosing the

penalty parameter in the framework of the interface element under investigation has been developed by

the authors (Pantano and Averill, 2002a,b).
Though the penalty-based interface element was originally developed to ‘‘connect’’ two regions of a finite

element mesh, it can also be used effectively to simulate crack growth, such as delamination. Initiation and

evolution of the delamination may be predicted by a fracture mechanics approach or by interlaminar

strength, introducing an interface constitutive law between the layers.

The fracture mechanics approach uses strain energy release rate G as a parameter for assessing

delamination, initiation and growth. In the fracture mechanics approach, strain energy release rate per unit

area delaminated is evaluated and compared with the critical strain energy release rate Gc. Thus, much
attention has been given to correctly evaluating strain energy release rate. Pradhan and Tay (1998),
Kaczmarek et al. (1998), Rinderknecht and Kroplin (1997), Wang and Raju (1996), Raju et al. (1996), Hwu

et al. (1995), Hitchings et al. (1996), developed finite element approaches for the analysis of delamination

growth in composite plates based on the virtual crack closure technique (VCCT) to compute the total

energy release rate G, including contribution by all the three modes.
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In the strength of materials approach, the local state of stress at the interface is compared with relevant

interface strengths. Use of finite element analysis makes the strength of materials approach attractive, as the

stresses can be evaluated quickly and efficiently, and interlaminar stresses can be easily compared with the

measured strengths. However, unless delamination initiation is the only concern, failure criteria usually
combine strength of materials features with fracture mechanics ones. Since the cohesive zone can still

transfer load after the onset of damage, a softening model is required that describes how the stiffness is

gradually reduced to 0 after the interfacial stress exceeds the interlaminar tensile strength. Reliable pre-

diction of the softening behavior can be obtained by relating the work of separation to the critical value of

the strain energy release rate Gc. At a given point on the interface, the area under the stress-relative dis-
placement curve is equal to Gc. This approach to the determination of the delamination growth has been
adopted by Reedy et al. (1997), Davila et al. (2001), Mi et al. (1998), Chen et al. (1999), Alfano and Crisfield

(2001), Lammerant and Verpoest (1996), Schellekens and de Borst (1993), Schipperen and Lingen (1999)
and Dakshima Moorthy and Reddy (1999). Interface elements are introduced to connect the individual

plies of a composite laminate, but the way this connection is realized can differ. Two approaches can be

identified: point to point interface elements acting like springs which connect pairs of nodes, and conti-

nuous interface elements that connect pairs of two- or three-dimensional finite elements.

In the work of Allix and Corigliano (1999), Point and Sacco (1996), Ladev�eze (1992), Bottega (1983), a
constitutive law for the interface material, able to handle the delamination phenomenon, has been obtained

starting from an adhesion model and is based on the definition of a damaged strain energy density in the

interface layer. Chakraborty and Pradhan (1999) performed a fully 3D finite element analysis to study
delamination at the interface of graphite/epoxy and glass/epoxy laminates with broken central plies. Their

methodology for predicting delamination employs simultaneously strength and fracture mechanics ap-

proaches. Joo and Sun (1994), Ko et al. (1992), Mohammadi et al. (1998), Zhao et al. (1999) and Chang and

Springer (1986) predicted delamination initiation by a strength approach very similar to the one of Cha-

kraborty and Pradhan (1999). A three-dimensional finite-deformation cohesive element and a class of

irreversible cohesive laws was developed by Ortiz and Pandolfi (1999) and Pandolfi et al. (1999). Moes et al.

(1999) presented an innovative finite element able to account for crack growth inside the element. The

approach adopted for delamination initiation and growth is based upon the maximum circumferential
stress criterion. Stresses are computed by the classical fracture mechanics equation for the stress distri-

bution at the crack tip. This finite element type of approach, also referred to as singularity element ap-

proach, was also used by Aminpour and Hosapple (1991) and Lee and Gao (1995).

This paper will briefly review the penalty-based interface element technology and subsequently intro-

duce a new application of the interface element for predicting delamination crack growth in laminated

structures.
2. General description of the interface element

Consider two independently modeled subdomains X1 and X2 as shown in Fig. 1(a) and (b), respectively,

for a 2D and for a 3D geometry. The two substructures are connected to each other using an interface

element acting like ‘‘glue’’ at the common interface. The interface element is discretized with a set of nodes
that are independent of the nodes at the interface in subdomains X1 and X2. The coupling terms associated

to the interface element are arranged in the form of a ‘‘stiffness’’ matrix and assembled with the other finite

element stiffness matrices as usual.

The nodal displacements of the subdomain Xj are identified by qoj and qij. The superscript o marks the
degrees of freedom (DOFs) that are not on the interfaces, while i denotes DOFs that are on the interfaces.
The interface displacement field uj of the subdomain Xj is expressed in terms of the unknown nodal



Fig. 1. (a) 2D and (b) 3D interface element configurations.
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displacements qij. The displacement field V is approximated on the entire interface element surface in terms
of unknown nodal displacements qs.
uj ¼ Njqij; V ¼ Tqs ð1Þ
where Nj can be the matrices of linear Lagrange interpolation functions and T is a matrix of cubic spline
interpolation functions. In the penalty interface method the displacement continuity constraint is imposed

in a least squares sense using two vectors of penalty parameters c1 and c2. Thus the total potential energy of
the system assumes the form:
p ¼ pX1 þ pX2 þ
c1
2

Z
S
ðV � u1Þ2 dsþ

c2
2

Z
S
ðV � u2Þ2 ds ð2Þ
The equilibrium configuration is found by taking the first variation of p respect to all the DOFs, but not the
vectors of penalty parameters c1 and c2 which are predetermined constants.
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dpjqo
1
;qi
1
;qS ;qo2;q

i
2
¼ 0 ð3Þ
The global system of equations of the penalty hybrid interface method assumes the following form:
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where
Gii
j ¼ cj

Z
S
ðNT

j NjÞds; Gis
j ¼ cj

Z
S
ðNT

j TjÞds; Gsi
j ¼ ½Gis

j �
T
; Gss

j ¼ cj

Z
S
ðT Tj TjÞds ð5Þ
This is a symmetric, banded and positive-definite (after boundary conditions are imposed) global stiffness

matrix. The ‘‘stiffness’’ matrix and generalized vector of unknown displacements associated with the
interface element can be defined as:
Gii
1 �Gis

1 0

�Gsi
1 Gss

1 þ Gss
2 �Gsi

2

0 �Gis
2 Gii

2

2
4

3
5 qi1
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8<
:

9=
; ¼

0

0

0

8<
:

9=
; ð6Þ
For a detailed description of the interface element formulation, see Pantano and Averill (2002a,b).
3. Determination of the penalty parameters

In the penalty method, the displacement continuity constraint is imposed through penalty parameters, a

set of predetermined constants. The FE solution obtained using this method is approximate, with its

accuracy depending on the value of the adopted penalty parameters. It is known that the penalty parameter

should depend on the material and/or geometric properties of the two subregions being joined. Further,
there is a relationship between the penalty parameter and the Lagrange multiplier that enforces a given

constraint. The Lagrange multiplier method imposes the continuity constraint exactly; thus it defines the

upper limit to the accuracy of the penalty method. Knowledge of the correct solution for simple model

problem facilitates relating the value of the penalty parameter to the geometrical and material properties of

the model under consideration. In our pursuit of the proper penalty parameter values, a variety of one and

two-dimensional problems have been studied with both the Lagrange multiplier method and the penalty

method. The types of finite elements that have been investigated are: conventionally formulated and re-

duced integrated Timoshenko beam elements, plane stress quadrilateral elements and plate elements based
on the first order shear deformation theory (FSDT), or Mindlin plate theory. For each finite element

formulation, different penalty parameters are associated to the various nodal DOFs. For example, the

Timoshenko beam element has three independent nodal DOFs: the axial displacement u, the transverse
displacement w and the rotation w. Thus, three different penalty parameters cu, cw and cw are employed to

enforce the interface continuity constraints on the DOFs u, w and w. An independent choice of the penalty
parameters is necessary since each degree of freedom can be related differently to the material and geometric

properties of the finite element model.

The methodology adopted in finding the relations will now be described. First the most common load
cases for the FE type under consideration are applied separately to a simple model of one or two elements.

The formulations and solutions are obtained using both the Lagrange multiplier method and the penalty
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method. The displacement solutions from the two methods are compared individually for each degree of

freedom. The ratio between the two solutions is expressed in the form:
upenalty

uLagrange
¼ 1þ f

c
ð7Þ
where f ¼ f (element geometric properties, material properties and loads).
Once this simple expression has been identified, the penalty parameter c is set equal to: c ¼ bf . Then, the

ratio between the solutions becomes independent of material and geometrical properties:
upenalty

uLagrange
¼ 1þ 1

b
ð8Þ
The accuracy of the solution depends directly on the value assigned to the parameter b. The degree of
precision of the solution cannot be indefinitely increased, since round off amplification error would rise.
However, once a reasonable compromise between constraint representation error and the round off error

has been evaluated, a value of b can be identified that is able to produce the same level of accuracy for every
combination of material and geometrical properties.

For a detailed description of the determination of the penalty parameter values, see Pantano and Averill

(2002a,b).
4. Interface technology for modeling delamination

The interface element technology (Pantano and Averill, 2002a,b) was originally developed for the

purpose of connecting independently modeled subdomains. By taking the converse view, it should be

possible to use this technology to disconnect two regions of a model during crack growth. In this context,

the present interface element approach would have several advantages over the conventional FE one. For

example, the present approach is able to release arbitrary portions of the interface that are smaller than the

finite element length, thereby determining the crack advance. This can be achieved by changing the extreme

values of the interval of integration of the interface element or by reducing the value of the penalty
parameter for a part of that interval. Within each interface subregion it is possible to evaluate forces at the

interface and to reduce the value of the penalty parameter as needed. Thus, it is possible to overcome a

limitation common to the delamination techniques found in the literature, which require delamination

growth to be simulated in a discretized form by releasing nodes or elements of the FE model.

The damage model implemented in the developed interface element is one that is commonly adopted

(Reedy et al., 1997; Davila et al., 2001; Mi et al., 1998; Chen et al., 1999; Alfano and Crisfield, 2001;

Lammerant and Verpoest, 1996; Schellekens and de Borst, 1993; Schipperen and Lingen, 1999; Dakshima

Moorthy and Reddy, 1999). It mixes features of strength of materials approaches and fracture mechanics.
A bilinear softening model has been implemented in the present model (see Fig. 2). In single-mode
σ

Gc

δ

δ0 δF

1

γ
γ(1-D)

1

σt

K

O

Fig. 2. Bilinear interfacial constitutive damage model.
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delamination, as the load is progressively increased, the relative displacement d the two subdomains FE
meshes grows proportionally according to the value of the penalty stiffness c. When d0 is reached the stress
is equal to the interfacial tensile strength rt, the maximum stress level possible. For higher relative dis-

placements the interface accumulates damage and its ability to sustain stress decreases progressively. Once d
exceeds dF the interface is fully debonded and it is no longer able to support any stress. If the load were

removed after d0 has been exceeded but before dF has been reached, the model would unload to the origin.

For example, if after reaching point K (see Fig. 2) the load is reduced, the model unloads along the line KO.
If the load is reapplied, the stress grows with the relative displacement along the same line KO.
This behavior is obtained by an effective reduction in the penalty stiffness c. In the present model, a new

parameter D is introduced in order to signify the damage accumulated at the interface:
Fig. 3.

softeni
r ¼ ð1� DÞcd ð9Þ
Thus D is a damage parameter, whose initial value is 0. D starts growing when d P d0 and reaches the value
1 when dP dF .
The value of D is computed from geometry to be:
DðdÞ ¼ dF ðd � d0Þ
dðdF � d0Þ

ð10Þ
The interfacial constitutive model is entirely defined when any two of the following properties are known:

Gc, rt, d0 and dF , where Gc is the critical strain energy release rate, which is equal to the area under r–d
curve in Fig. 2. The following two relations exist among these parameters:
Gc ¼
dFrt
2

ð11Þ

d0 ¼
rt
c

ð12Þ
The bilinear interface model is applied to a subregion of the interface between the two meshes; the smaller

is the length of each subregion the higher is the accuracy of the prediction. A conventional implementa-
tion of the discussed damage technique requires the model to be applied along the length of one finite

element, wherein the crack can advance in a discrete way only by failing one element at a time. Both

limitations necessitate the use of a refined finite element mesh. Using the interface element previously

presented, the damage evolution scheme in our model is effectively mesh-independent, wherein continuity

between subregions of the interface that are much smaller than the finite element length can be released.

Note that different softening interface laws can be implemented in the present approach. In Fig. 3 some

of the most commonly used damage models are reported. If a damage model different from the bilinear one

is adopted, the expression (10), which allows the evaluation of damage parameter D as a function of the
Interfacial constitutive damage models commonly adopted, where pp refers to perfectly plastic, pro refers to progressive

ng, lin refers to the bilinear model used herein and reg refers to regressive softening.



3816 A. Pantano, R.C. Averill / International Journal of Solids and Structures 41 (2004) 3809–3831
relative displacement d, must be modified. The changes in the relation (10) will easily follow from the new
geometry of the softening interface model.

Thus, the present interface model can be applied to a desired fraction of the interface between the two

meshes. If we divide the interface element into a given number of intervals n, each of them will obey the
rules of the failure model independently from the others. This corresponds to changing the total potential

energy of the system in the following way:
p ¼ pX1 þ pX2 þ
1

2

Xn

i¼1
ð1� DiÞc1

Z Li

Li�1

ðV � u1Þ2 dsþ
Xn

i¼1
ð1� DiÞc2

Z Li

Li�1

ðV � u2Þ2 ds ð13Þ
where Di is the damage parameter associated with the interval i, and the interval i is defined over the range
(Li�1; Li). Li is the value of the interface coordinate L at the end of the ith interval. The value of the relative
displacement d is evaluated at the center of the interval i. By allowing crack advance in a more continuous
way, a higher accuracy of the simulation can be achieved.
To illustrate this concept, consider the two incompatible meshes shown in Fig. 4. They are joined by two

interface elements whose length equals that of five conventional elements of the top mesh and four elements

of the bottom mesh. Two forces F applied at the tip are responsible for effecting a mode I stress field at the
interface. The interface element at the crack tip is shown in Fig. 4(a) as divided in 10 intervals. The intervals

do not need to match any of the nodes in the upper or lower mesh, but in this example some of them

coincide. Moreover, the number of intervals in the interface element is a parameter that can be changed as

desired. Following the progression in Fig. 4, a simulation of the delamination growth is achieved by

releasing portions (intervals) of the interface element. In Fig. 4(b), the first interval is failed. The portion of
F

123458910 (a)

(b)

(c)

(d)

(e)

7 6

Fig. 4. Division of the interface element in intervals.
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the interface element not released still applies its constraint to the lower and upper elements next to the

crack tip.

In Fig. 4(c) the second interval is failed, which determines the complete release of the element on the

upper mesh near the crack tip. The element on the lower mesh moves downward too, but being still held in
part, the movement is small. The next advance in the crack length, Fig. 4(d), frees the lower element and

only partially the upper. Fig. 4(e) shows the effect of releasing yet another interval. Similarly, when all the

intervals are failed the FE model behaves as though the first interface element is not present. Then, the next

interface element starts failing. In this example, intervals whose length is half of the smaller finite element

extension have been used. Dividing the interface element into more intervals or reducing its length would

improve the accuracy of the model.

By progressively reducing the dimension of the intervals in which the interface element is divided, the

results will converge to a values that will not change noticeably as the intervals length are further reduced.
Usually, this kind of convergence study do not require several simulations since the rate of convergence is

typically high. Moreover, experience in choosing the intervals length developed by working with similar

simulations can be easily applied to new calculations. It needs to be underlined that intervals dimensions

smaller than the minimum element size along the crack should not be used as the accuracy will quickly be

reduced. In the numerical results convergence of the solution with the number of intervals is investigated

for the double cantilever beam DCB specimen.

The other essential convergence study, which is commonly necessitated in FE approaches to the simu-

lations of crack growth, is based on investigating the model behavior as a function of the number of
increments in which the given load/displacement is progressively applied. At the beginning of each incre-

ments, or load step, the relative displacement d at the center of the interval is obtained from the FE cal-

culation for all the intervals in which the interface element is divided. If the increment in the applied load or

displacement is too high, the bilinear softening model cannot work correctly and the results will be

incorrect. For example, if at the beginning of the increment the relative displacement d for the interval at
the crack tip is slightly smaller than d0 while at the end of the increment it is much higher, for the entire load
step the damage parameter D maintain its zero value and the stress at the interface will considerably exceed
the interfacial tensile strength rt. The softening will be applied only in the next increment, with the addi-
tional flawed consequence that when the interval will fail the area under r–d curve will be higher than the
critical strain energy release rate Gc. Thus, as for the great majority of the FE approaches to the simulations
of crack growth, a convergence study on the number of increments should always be performed. In the

numerical results convergence of the solution with the number of increments is reported for the double

cantilever beam DCB specimen.

For a more detailed description of the interface element technology for simulating crack growth between

independently modeled finite element subdomains, see Pantano and Averill (2002b).
5. Mixed-mode failure

In defining the softening model, the following properties are needed: the interlaminar tensile and shear

strengths T and S, the penalty parameter c, and the critical strain energy release rates GIc and GIIc.
For simplicity, we assume herein that material behavior is the same for both tensile and compressive

loading.

At a given load increment the finite element solution allows us to compute dx and dz for an interval of the
interface element. We also know:
dz0 ¼
T
c

ð14Þ
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dx0 ¼
S
c

ð15Þ

rz ¼ cdz ð16Þ

sxz ¼ cdx ð17Þ

A quadratic interface failure criterion can be written in the following forms:
rz

T

� �2
þ sxz

S

� �2
¼ 1 ð18Þ

dz

dz0

� �2
þ dx

dx0

� �2
¼ 1 ð19Þ
If the condition in (19) is not satisfied, no action needs to be taken. Otherwise, we assume the following

ratio:
dz
dz0

� �
dx
dx0

� � ¼ C1 ð20Þ
to be the same as it was when the failure condition (19) was satisfied first (see Fig. 5).

If the load steps are small, then the assumption should be valid. Then, from geometry, it is possible to
determine the value of the relative displacements d0

x and d0
z corresponding to point F in Fig. 5.
d0
x ¼ dx0

dx
dx0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dz
dz0

� �2
þ dx

dx0

� �2r ð21Þ

d0
z ¼ dz0

dz
dz0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dz
dz0

� �2
þ dx

dx0

� �2r ð22Þ
The interfacial constitutive models are updated for both delamination modes I and II by setting d0
x0 ¼ d0

x

and d0
z0 ¼ d0

z (see Figs. 6 and 7).
Fig. 5. Quadratic failure envelope for tensile–tensile loading.



Fig. 6. Updated interfacial constitutive model for mode I.

Fig. 7. Updated interfacial constitutive model for mode II.
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The interlayer tensile strengths T and S are updated accordingly:
T 0 ¼ cz 
 d0
z0 ð23Þ
S0 ¼ cx 
 d0
x0 ð24Þ
Note that the following inequalities hold.
d0
x06 dx0; d0

z06 dz0; dx P d0
x0; dz P d0

z0 ð25Þ
The quadratic interaction criterion predicts final failure to be reached when the following condition is

satisfied:
GI
GIc

� �2
þ GII

GIIc

� �2
¼ 1 ð26Þ
In a similar manner as before, we assume the ratio between ðGII=GIIcÞ and ðGI=GIcÞ does not vary as the
work of separation grows, as shown in Fig. 8:
GII
GIIc

� �
GI
GIc

� � ¼ C2 ð27Þ
Research on the specimens commonly used for delamination studies shows that, for a given configuration

(geometry and loads), the ratio between the strain energy release rates for modes I and II, GI=GII, does not
change appreciably during the entire test (e.g., Choi et al., 1999). This fact provides a valid foundation to
our assumption. Thus, it is possible to determine the value of the strain energy release rate G0

I and G0
II

corresponding to point F in Fig. 8.



Fig. 8. Quadratic final failure surface.
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From geometry it is possible to determine the value of the ðGI=GIcÞ0 at F .
G0
I ¼ GIc

GI
GIc

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GI
GIc

� �2
þ GII

GIIc

� �2r ð28Þ
In order to evaluate this expression we need to determine ðGI=GIcÞ (actual value of GI divided by GIc) see
Fig. 9.
GIc ¼
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Similarly, we have:
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d0xF
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Now, the updated state of the interfacial constitutive models can be completed for both modes I and II by

setting G0
Ic ¼ G0

I and G0
IIc ¼ G0

II.
Fig. 9. Final interfacial constitutive model for mode I delamination.



Fig. 10. Final interfacial constitutive model for mode II delamination.
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Figs. 9 and 10 show the final form of the interfacial constitutive models. As can be noticed, the models

have different penalty and damage parameters. In this a way, the maximum freedom is allowed for mod-

eling delamination modes I and II.
6. Friction model

6.1. Evaluation of the force at the interface

It is known that the Lagrange multiplier k is related to the penalty parameter c by:
F ¼ k ¼ c 

Z
s
ðv� uÞds ð33Þ
where F is the force per unit length required to hold the two regions together. It is important to notice that
we are not restricted to compute the force on the entire interface, but rather it can be evaluated for a

portion of the interface length. This can be performed by changing the extreme values of the interval of
integration.

Finally, computation of the interface force does not depend on the compatibility of the interface meshes.

Even if the discretizations of the adjacent layers, or layer and skin-stiffener, are different we are still able to

choose at will the interface length along which to evaluate forces.

6.2. Implementation of friction in the interface element

The friction model can be applied to interface elements after complete failure or to interface elements

whose only purpose is to avoid overlapping and to enforce friction.

For each of the intervals in the interface, the normal force Fn at the interface can be calculated in terms of
the normal relative displacement dn:
Fn ¼
1

2
cn

Z
s

dn ds ð34Þ
Assuming Coulomb friction, the tangential force Ft that the interface element needs to generate to simulate
the friction phenomenon is:
Ft ¼
1

2
ctð1� DtÞ

Z
s

dt ds ¼ sFn ð35Þ
where s is the friction coefficient and dt is the tangential relative displacement. The parameter Dt, which
before failure was used as a damage parameter, is now employed as a scale factor able to reduce the value of
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the penalty parameter for the tangential DOF. Assuming the value of Dt that makes the equality (35) to
hold true, the right amount of friction will be generated by the interface element.

The required damage parameter D�
t related to the tangential relative displacement dt can be determined

from the following relation:
Fig
D�
t ¼ 1�

2sFn
ct
R
s dt ds

ð36Þ
6.3. Numerical test of the friction model

A simple test has been performed to verify the reliability and the accuracy of the friction model

implemented into the interface element.

The loading, the boundary conditions and the geometry for the test problem are illustrated in Fig. 11.
Two finite element meshes are connected along the common boundary using one interface element. All the

finite elements are rigid and their thickness is 0.5 m.

During a quasi-static analysis of 400 load increments, a 1 mm tangential displacement is gradually

imposed to the nodes of the upper mesh, as shown. At the same time, a pressure load of 1 MPa is applied to

the top the upper mesh and is kept constant through the entire analysis. According to the Coulomb law

Ft ¼ s 
 N , since a coefficient of friction equal to s ¼ 0:1 is assumed and the contact area is 1 m2, as expected

total reaction force at the interface nodes is:
(a)

(b)

. 11. Loading, boundary conditions and geometry for the friction test problem: (a) exploded view and (b) assembled view.
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Ft ¼ sFn ¼ srA ¼ 0:1 
 1 
 e6 N
m2


 1m2 ¼ 1 
 e5N ð37Þ
In Fig. 12 is reported the reaction forces vs. the tangential displacement produced by the FE analysis for the

interface nodes 1, 2 and 3. For each of the 400 increments in the displacement value, the reaction force at

the central node is recorded to be a constant value of 0.5e5 N while on the other two nodes a constant value

of 0.5e5 N is obtained. These sum to the analytical value of 1 
 e5 N.
7. Numerical results

7.1. Double cantilever beam test #1

The loading, the boundary conditions and the geometry for the double cantilever beam DCB specimen
are illustrated in Fig. 13. The DCB test is recognized as pure mode I test. The properties assumed for the

beam material are: E11 ¼ 130 GPa, E22 ¼ E33 ¼ 8 GPa, G12 ¼ 6 GPa, m ¼ 0:27. The properties of the DCB
specimen interface are: GIc ¼ 257 N/m and rt ¼ 20 MPa.
Three finite element models of varying mesh refinement (120 · 2, 300 · 8, 600 · 8) have been used to verify

the capabilities of the present approach. In Fig. 14, original and deformed models of the DCB test specimen

are shown for the coarsest mesh. Two independent meshes compose the finite element models of the upper

and lower part of the beam; they are joined by several interface elements. Each interface element connects

four finite elements: two on the bottom mesh and two on the top. Experimental results used to validate the
present delamination approach have been reported by Chen et al. (1999). A plot of the reaction force as a
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Fig. 13. Geometry and boundary conditions for the DCB test specimen.

Fig. 14. Original and deformed (5 mm opening) models of the DCB test specimen using a 120· 2 mesh.
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function of the applied end displacement is shown in Fig. 15. Results from the experiment are compared to

analytical ones for all the finite element models.
Note that the total number of elements in the meshes is indicated, for example two 120 · 1 meshes joined

by interface elements compose the 120 · 2 mesh. The predictions from the 120 · 2 mesh contain many local
‘‘bumps’’. Mi et al. (1998) have analyzed this phenomenon, concluding that coarse meshes can induce these
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‘‘false instabilities’’. As the mesh is refined, the predicted response agrees very well with that measured

experimentally.

As discussed previously, the damage technique implemented in our model allows portions of the

interface, intervals, much smaller than the finite element length, to be released. In Fig. 16 convergence of the
solution with the number of intervals is investigated for the 300 · 8 mesh. It can be noticed that as
the number of intervals increases the accuracy of the results improves. Fig. 17 illustrates the model behavior
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as a function of the number of increments for the 300 · 8 mesh. Convergence of the solution to the
experimental one is achieved by increasing number of intervals.
7.2. Double cantilever beam test #2

To further verify the ability of the interface to accurately simulate delamination growth in composite

materials, a second double cantilever beam DCB test was performed. Material data and experimental re-

sults are taken from a different source (Alfano and Crisfield, 2001) with respect to the first DCB test.
The loading, the boundary conditions and the geometry for the double cantilever beam DCB specimen

are illustrated in Fig. 18. The properties assumed for the beam material are: E11 ¼ 126 GPa, E22 ¼ E33 ¼ 7:5
GPa, G12 ¼ 4:981 GPa, m ¼ 0:281. The properties of the DCB specimen interface are: GIc ¼ 263 N/m and

rt ¼ 57 MPa.
A plot of the reaction force as a function of the applied end displacement is shown in Fig. 19. The finite

element model has a mesh of 300 · 8 elements and the displacement boundary conditions are applied in 400
increments. The predicted results compare well with the experimental results.
7.3. End-loaded split beam test

To characterize the mode II delamination, shearing mode, the end-loaded split (ELS) specimen is often
used. The loading, the boundary conditions and the geometry for the end-loaded split (ELS) specimen are

illustrated in Fig. 20.

The properties assumed for the beam material are: E11 ¼ 130 GPa, E22 ¼ E33 ¼ 8 GPa, G12 ¼ 6 GPa,
m ¼ 0:27. The properties of the ELS specimen interface are: GIIc ¼ 856 N/m and rt ¼ 48 MPa. As in the
DCB test specimen models, two meshes compose the finite element models of the ELS specimen; they are

joined by several interface elements. For the results shown, a 300 · 8 finite element mesh has been utilized.
In Fig. 21, original and deformed models of the ELS test specimen are shown. Experimental results used

to validate the present delamination approach have been reported by Chen et al. (1999). A plot of the
reaction force as function of the applied end displacement is shown in Fig. 22. Convergence of the solution

as the number of increments increases is demonstrated. The comparison with experimental results is again

very good.
L = 100
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a0 = 30

b = 3

P

P

Fig. 18. Geometry and boundary conditions for the DCB test #2.
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Fig. 21. Original and deformed (30 mm tip displacement) models of the ELS test specimen for a 300 · 8 mesh.
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Fig. 20. Geometry and boundary conditions for the ELS test specimen.
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7.4. Fixed-ratio mixed mode test

To test the mixed mode I + II delamination capabilities of the interface model, the fixed-ratio mixed

mode (FRMM) specimen has been considered. The loading, the boundary conditions and the geometry for
the FRMM specimen are illustrated in Fig. 23.

The properties assumed for the beam material are: E11 ¼ 130 GPa, E22 ¼ E33 ¼ 8 GPa, G12 ¼ 6 GPa,
m ¼ 0:27. The properties of the ELS specimen interface are: GIc ¼ 257 N/m, GIIc ¼ 856 N/m and rt ¼ 48
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Fig. 24. Original and deformed (20 mm tip displacement in absence of delamination) models of the FRMM test specimen.
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MPa. As in the DCB and ELS test specimens models, two meshes compose the finite element models of the
ELS specimen; they are joined by several interface elements. For the results shown, a 300 · 8 finite element
mesh has been utilized.

In Fig. 24, original and deformed models of the ELS test specimen are shown. Experimental results used

to validate the present delamination approach have been reported by Chen et al. (1999). A plot of the

reaction force as function of the applied end displacement is shown in Fig. 25. The predictions agree well
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with the experimental results, demonstrating that the novel mixed-mode damage model implemented in the

interface element is able to correctly predict delamination growth in a mixed-mode FE simulation.
8. Conclusions

A new interface element technology has been presented for predicting crack growth in laminated

structures. This interface method is capable of joining and simulating crack growth between independently

modeled finite element subdomains (e.g., composite plies). The interface element approach makes it pos-

sible to release subregions of the interface surface whose length is smaller than that of the finite elements,

thereby allowing for a mesh-independent tracking of the crack front. A novel approach for modeling the
crack growth in mixed mode I + II conditions has been developed. Results for double cantilever beam DCB,

end-loaded split (ELS) and fixed-ratio mixed mode (FRMM) specimens indicate that the method is capable

of accurately predicting delamination growth.
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